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Simulation of chaotic behaviour in population dynamics
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Abstract. In the time evolution of populations, many attractors can be found: fixed points, limit cycles
and chaotic regimes. Usually, chaotic behaviour is observed in species which have well defined breeding
seasons and a high fertility rate. Different mathematical models have been used in order to simulate those
regimes. In this paper, we use the bitstring model introduced to simulate the evolution of age-structured
populations — the Penna Model — to simulate a sort of cyclic and chaotic behaviours. In comparison with
the standard logistic map, our results show a time changing λ parameter.

PACS. 87.10.+e General, theoretical, and mathematical biophysics (including logic of biosystems,
quantum biology, and relevant aspects of thermodynamics, information theory, cybernetics, and bionics)
– 05.45.+b Theory and models of chaotic systems – 02.70.Lq Monte Carlo and statistical methods

1 Introduction

The time evolution of a population is governed by some
basic parameters: reproduction, environmental constraints
and hereditary-mutation. Due to the difficulty of observa-
tion of populations in wild or even considering that there
is unlikely to isolate the evolution of a specific species,
mathematical models constitute an important tool in the
study of population dynamics. The first model of pop-
ulation growth was proposed by Linnaeus in 1740. His
simple model introduced for the first time the exponential
growth. Sixty years later Malthus discussed the problem
of food supply, arguing that some environmental restric-
tions should be added to model the population dynamics
and to suppress the indefinite population growth. The idea
of many offspring disputing food and the survival of the
fittest individuals was used by Darwin (again sixty years
after Malthus - 1859) when establishing his concept of
Natural Selection [1].

The most known model where these basic assumptions
appear is the logistic model for population growth. This
model was first introduced by Verhulst in 1844 [2]. In that
case, an environmental carrying capacity Nmax is intro-
duced and the growth rate of a population is given by

dN

dt
= rN

(
1−

N

Nmax

)
, (1)

where r is the intrinsic relative growth rate, i.e., the pop-
ulation growth rate when the environmental effects are
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negligible. In this continuous process, the final state is al-
ways a fixed point. However the discrete version of the
logistic model can display a remarkable range of dynamic
behaviours: Fixed points, limit cycles and chaos.

Is it possible that some kind of species show such type
of chaotic evolution along the time? The Operophtera bru-
mata moth is one. The brumata is a insect that lives
in oaks Quercus robur and has a well defined life cycle:
Adults emerge from the soil in November/December, re-
produce and the larvae form the cocoon in May until the
next season, when the process is repeated. In this case,
the observed chaotic dynamics of the moth population is
produced by a strong competition between environmen-
tal factors (weather and predators) and high reproductive
rate [1]. Another important ingredient in this case is that
this is a species which presents a well defined reproduc-
tive period and is therefore better explained through an
assumption of discrete time model than a continuous one.

The study of the influence of heredity and mutation
on population dynamics started in the ’30s [3]. In con-
trast with other models which had assumed variations in
the population size during its evolution, the genetic popu-
lation theory worked with the perspective of a stable sta-
tionary state given by a fixed population: The hypothesis
of a balance of selection and mutation. Moreover, the ba-
sic calculations have been done taking into account infinite
populations. The discussion of extinction scenarios within
the theory was proposed by Muller [4], who stated that for
an asexual population a progressive genetic deterioration
should be observed, with a progressive random loss of bet-
ter fitted individuals: Muller’s ratchet. However, only in
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Fig. 1. Evolution of population showing two different regimes:
a limit cycle with period 2 and a chaotic regime. The general
parameters are: N0 = 105, Nmax = 1.5 × 106, M = 1, T = 6,
R = 4. B = 20 for t < 3, 000 and B = 35 for t > 3, 000. This
simulation ran up to t = 20, 000.

the ’90s a wide discussion about the problem of extinction
due to the accumulation of detrimental mutations began.
Lynch and Gabriel [5] pointed out that the accumulation
of deleterious mutations is expected to cause a gradual
reduction in the population size down to zero, calling the
synergistic interaction between fixation of harmful muta-
tions and population reduction mutational meltdown.

Although different scenarios can be modeled in popu-
lation dynamics theory [6], up to now Monte Carlo sim-
ulations of population dynamics have been mostly given
stable stationary configurations when no mutational melt-
down occurred. In this paper we show that limit cycles or
even a chaotic regime can be obtained in the evolution of
a population as described by the Penna model [7]. The
Penna model has been introduced to describe the evolu-
tion of age-structured populations and important results
have been obtained when compared with experimental
observations [8,9]. However, up to now, the general be-
lief was that the Penna model could lead only to stable
fixed points: a stable population [6,7] or the extinction.
Moreover, the case of mutational meltdown was obtained
only when all detrimental mutational events were success-
ful disregarding the problem of extinction due to Muller’s
ratchet effect in small population [8,10]. Even the small
oscillations obtained by Puhl et al. [11] when studying
the prey-predator problem could be damped if the death
probability due to environmental factors is divided in two
terms: Space restrictions and predators-prey interaction
[8]. However, as we are going to show, for some given def-
initions of the basic parameters a myriad of dynamical
behaviours will appear: Limit cycles or chaotic behaviour.
First of all, we show that the basic ingredients were present
in the basic definition of the population dynamics as given
by the original model. After that, we present the results
of some simulations and conclude.

2 The model

In the Penna model the genome of an individual is rep-
resented by a string of 32 bits. Each bit corresponds to a
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Fig. 2. Return map for the period-2 and chaotic regimes. The
chaotic case evolves from the double period when the birth rate
is switched from 20 to 35 (at t = 3, 000).

threatening disease which may appear in a given “year”
(the so defined time unit): bit = 1 means the presence of
a deleterious mutation and bit = 0 represents a normal
allele (allele is any of the various forms a gen can occur).
After appearing the disease will act during the entire indi-
vidual life. The individual that accumulates T mutations
dies. Due to environmental restrictions, an individual has
the probability

P`(t) = 1−
N(t)

Nmax
(2)

of staying alive from one year to the following. If an indi-
vidual reaches 32 years it automatically dies. After R years
an individual reaches reproductive maturity and produces
B offspring per year. The offspring’s genome is a copy of
its parent genome, apart from M randomly chosen mu-
tations. The mutation procedure is implemented by an
OR instruction: only detrimental mutations (0 → 1) are
accepted. If the bit was already equal to 1 it remains un-
changed.

Although recently some progress has been made in the
study of problems involving sexual reproduction [8,12,13],
in this paper we will focus our attention only in asexual
reproduction.

Initially, a population of N0 individuals is defined. The
evolution of the whole population is given by the follow-
ing steps: selection, reproduction and mutation events. For
each time step — a year — we evaluate P`(t), i.e., a dis-
crete evolution is assumed as discussed above. After that
the reproduction takes place for those individuals which
are older than R and mutations occur at the birth mo-
ment. Thus, the model includes a competition between a
parameter which forces the population growth (the birth
rate B) and another one which does not allow its indefi-
nite growth (the Verhulst factor). Both parameters depend
on the population size N(t). These are the basic ingredi-
ents already present in the logistic equation and one can
write a generalized logistic equation for the evolution of
the population:

X(t+ 1) = λ(t)X(t) [1−X(t)] , (3)

where X(t) = N(t)/Nmax. The intrinsic relative growth
rate λ is now a time dependent variable. As is well known



A.T. Bernardes et al.: Simulation of chaotic behaviour in population dynamics 395

1000 1300 1600
time

0.00

0.02

0.04
|(

N
1-

N
2)

|/(
N

1+
N

2)

3500 3800 4100
time

0.0

0.2

0.4

Fig. 3. Relative difference between two initially identical pop-
ulations evolving in parallel. The plot shows how a small differ-
ence will propagate. At left the population evolves following a
period-2 attractor and at right a chaotic regime. Note that the
difference in the second case is one order of magnitude higher
than in the first case.

from the analysis of the discrete logistic equation, in order
to obtain different attractors for the dynamics we have
to increase λ. Basically it can be done by increasing the
birth rate B and the fraction of individuals older than
R. The latter is obtained by defining T > R. So, only
the Verhulst factor will kill individuals before they start
reproduction.

3 Results and conclusions

Although we did many different simulations, in the fol-
lowing we show only our main results. Figure 1 shows a
detail in the evolution of a population (where we did not
plot the initial transient). Starting with N0 = 105 indi-
viduals, firstly we obtain a period-2 evolution. Notice that
this period-2 evolution is permanent and the same results
have been obtained for larger populations. The general
parameters are: Nmax = 1.5× 106, B = 20, R = 4, T = 6
and M = 1. The simulations started with individuals with
half of the genome randomly filled with detrimental muta-
tions. We assume, following previous works [14], that the
final state does not depend upon the initial configuration
of the genomes. Thus, we assumed a much higher B value
than the usual ones and worked with T > R instead of
T < R of earlier publications.

After t = 3, 000 we switch the birth rate to B = 35,
now introducing a strong competition between the num-
ber of offspring and the environmental carrying capacity.
With these conditions, a small population in a given year
can generate a large population in the next one, almost
reaching the maximum environmental capacity, as can be
seen in the right part of Figure 1. After that — in the year
that follows — environmental restrictions will reduce the
population by nearly an order of magnitude. The chaotic
regime arises in this scenario. It is very difficult to obtain
a chaotic regime starting with a population with all the
individuals with the same age. During the transient period
sometimes occurs the extinction of the entire population.
So, we let the system reach a stationary state and then
turn the dial, changing parameters.

Figure 2 shows the return map for the period-2 (at left)
and chaotic (at right) regimes. In each map were plotted
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Fig. 4. Evolution of λ(t) with time. This value has been ob-
tained from the same simulation as shown in Figure 1.

the last 2,000 points of the 9,000 obtained in our simula-
tions. Due to small fluctuations, two spots are obtained in
the period-2. In this case we used Nmax = 1.5 × 105 and
N0 = 104. These two spots give rise to the two attractors
shown in the right part of the figure. Along the time the
population jumps from one part to the other, showing the
characteristics of a period-2 regime.

In order to better understand the difference between
the two regimes, we studied how a small change produced
in one of the initially identical populations will propa-
gate along the time. This is similar to the study of spread
of damage done in many problems [15]. The process was
done as follows: First we ran a simulation up to a specific
maximum time (usually tmax = 10, 000). After that, we
repeated this simulation, starting with exactly the same
set of parameters. At a pre-defined time step (t = 1, 000
for period-2 and t = 3, 500 for chaotic regime) we remove
an individual from the population of the second simu-
lation. For period-2 we started with N0 = 104, keeping
Nmax = 1.5 × 105 and for the chaotic regime we used
N0 = 105 and Nmax = 1.5× 106. Having the two popula-
tions, we calculated the relative difference between their
sizes: |(N1−N2)|/(N1 +N2). The results are shown in Fig-
ure 3. For period-2 dynamics a residual difference remains
indefinitely. This difference, as one can see, is always less
than or of the order of 2%. For the chaotic case, the dif-
ference grows rapidly showing strong changes. Sometimes
this difference is greater than 60%. We did not measured
the difference in the age-structure of the populations.

Finally, Figure 4 show the evolution of λ(t) as defined
in equation (6). This parameter does not have a constant
value, even for the period-2 case. It is interesting to re-
port that this type of non-fixed value and non-periodic
value — for the chaotic regime — is also obtained in real
populations, as the case of the moth cited above [1].

In conclusion, in contrast to earlier assumptions, we
have shown that the Penna model can exhibit all the
basic behaviours found in the dynamics of real popula-
tions. A chaotic regime was obtained trough the com-
petition between a high reproductive rate and environ-
mental restrictions. This situation can be considered for
populations with well defined reproductive period. If we
change continuously the P` parameter accompanying the
population growth, the chaotic regime will disappear,
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as one obtains in the solution of the continuous logistic
equation. An interesting aspect observed in the different
regimes is that the intrinsic relative growth rate is not a
constant parameter, but a time-changing one. It follows
the period of the attractor. For the chaotic case the same
type of behaviour has been observed. Further investiga-
tions on the characterization of the attractor and on the
intrinsic relative growth rate are in progress and the re-
sults will be published elsewhere.
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